Trajectories of Child Language Use with Spanish-Speaking Caregivers Spanning the First Two Years of School

Sarah Surrain
University of Texas Health Science Center at Houston

AERA Annual Meeting
April 15, 2023
Chicago, IL

Overarching Questions

How do home language practices shift after children start school? What contextual factors are associated with changes in Spanish and English use?

Spanish-Speaking•Fastest-growing group of school-aged children in the Dual Language Learners United States

- Varied immigration histories, social circumstances, and cultural practices, including language practices 2018; López \& Foster, 2021; U.S. Census Bureau, 2019

Diversity in DLLs' home language practices

- Spanish-English DLLs vary in the degree to which they use Spanish with Spanish-speaking parents
- In previous studies, on average, DLL children...
- ...preferred to use English with bilingual parents (López et al., 2020)
- ...increased in their English use over time (Hammer et al., 2011)
- But these average trends may obscure distinct language-use trajectories among DLLs
- Luo et al. (2020) used group-based trajectory modeling to identify different parent profiles of change in Spanish and English use
- The current study uses a similar approach to identify different profiles of change among DLL children

Conceptual Framework

"Humans develop through their changing participation in the sociocultural activities of their communities, which also change." (Rogoff, 2004)

- Culture permeates all aspects of life including parent-child interactions
- Culture is a diversifying force rather than a homogenizing force
- The current study looks at how children change in their participation in parentchild book sharing interactions over time, and explores factors related to different language-use trajectories

Research Questions

1. What distinct profiles can be identified in the languageuse trajectories of DLLs in the 2 years spanning school entry?
2. What contextual factors are associated with membership in each profile?

Method: 35 Spanish-speaking parent-child dyads in the Boston area

- 31% self-identified as bilingual in Spanish and English

Method: Study Design and Procedures

- Video-recorded parent-child interactions with a wordless picture book
- Transcribed in CLAN
- Word types per minute in Spanish \& English, child-initiated code-switching
- Parent interview, child vocabulary assessment in Spanish \& English (CELF-P2)

Analytic Approach

- Group-based trajectory model using the Stata traj plugin
- Independent variable: child age (centered)
- Dependent variables: child Spanish types/min, child English types / min
- Full-information maximum likelihood (FIML)
- $n=32$ with 2 or 3 waves
- Evaluated fit:
- BIC/AIC, posterior probabilities (> .9), sample size per group
- Resulting groups compared on:
- Parent and child demographics and language history
- Characteristics of parent and child language use

RQ1: What distinct profiles can be identified in the language-use trajectories of DLLs in the 2 years spanning school entry?

Model Selection

		\% Assigned to each group			
No. of Groups	BIC	AIC	Group 1	Group 2	Group 3
1	-506.55	-501.42	100%	na	na
2	-451.48	-441.22	59%	$\mathbf{4 1 \%}$	na
3	-463.61	-448.22	59%	41%	0%

Trajectories of Spanish and English use by group

High-increasing Spanish use \& low-stable English use

Variable Spanish \& increasing English use

Spanish and English word types for 2 trajectory groups

	Group 1. High- increasing Spanish use, low-stable English use	Group 2. Variable Spanish use, increasing English use	Comparing groups (2-tailed t-test)
Posterior probability	.98	.95	
Percentage	59%	41%	
Spanish types; M(SD)	19	13	
Wave 1	$10.59(5.89)$	$6.23(2.53)$	${ }^{*} p=.0180$
Wave 2	$13.29(4.77)$	$8.61(6.18)$	${ }^{*} p=.0219$
Wave 3	$14.77(8.09)$	$7.87(6.00)$	${ }^{*} p=.0325$
English types; M(SD)			
Wave 1	$.26(.31)$	$1.93(.99)$	${ }^{* * * p<.0001}$
Wave 2	$.62(.62)$	$4.94(3.90)$	${ }^{* * * p<.0001}$
Wave 3	$.54(.57)$	$5.84(5.40)$	${ }^{* *} p=.0013$

RQ2: What contextual factors are associated with membership in each profile?

The University of Texas

Do profiles differ by demographics or language history?

Parent years since immigration to U.S.

The University of Texas

Do profiles differ by parent or child language use?

Parent Language

Parent Spanish
word types/ min

Parent Mean Length of Utterance

Child Language
Child Spanish Exp.
Vocab. raw score

Child-initiated CodeSwitches to English

A tale of two children: Samuel and Deisy

Samuel

- Has twin brother
- Mom from

Colombia has lived in U.S. for 11 years

- Dad from U.K but also lived in Colombia
- Both parents are bilingual and use Spanish with children
- Grandma from Colombia lived with family
- PK at an Englishonly Montessori school

Deisy

- Has older siblings who use only English
- Mom from Mexico has lived in U.S. for 20 years
- Dad from El Salvador
- Mom is bilingual, dad is more dominant in Spanish
- PK at an Englishonly Head Start, K at English-only charter school

Group 1 Example: Samuel

Age: 3;0
*PAR: ay, quién se quedó?
*PAR: shh!
*PAR: mira.
*PAR: quién está haciendo shh?
*PAR: alguien se quedó del tren, amor.
*PAR: quién es?
*CHI: el mico. (the monkey)
*PAR: pero mira el mico pícaro qué está haciendo?
*PAR: shh!
*CHI: shh!

-

Age: 3;10

*PAR: es un mico pícaro.
*CHI: ya se bajó. (he already got off.) *PAR: aquí mira él estaba aquí con la familia.
*PAR: quieres verla?
*CHI: mhm.
*PAR: míralo aquí está el mico?
*CHI: y de repente se bajó? (and he suddenly got off?)

Age: 5;4
*PAR: mira cómo se subió el mico aquí?
*CHI: porque los micos son muy buenos escaladores. (because monkeys are very good climbers.) *PAR: es un buen escala(dor) +/.
*CHI: primero estaba aquí y subió. (he was here first and then he climbed up.) *CHI: y llegó aquí. (and he got here.)
*PAR: y el viejo cómo estaba?
*CHI: triste. (sad.)
*PAR: triste.

Group 2 Example: Deisy

Age: 4;6
*PAR: oh mira y se quedó con el payasito!
*PAR: quién es él?
*CHI: monkey.
*PAR: sí un monito ve.
*PAR: y se quedó feliz.

Age: 5;4
*PAR: mire se quedó triste el señor granjero.
*CHI: sí, and the monkey.
*PAR: sí.
*CHI: the monkey...
*PAR: y?
*PAR: se quedó dijo.
*PAR: silencio!
*PAR: que no se diera cuenta que se quedó con él.
*CHI: sí.
*PAR: sí?
*PAR: y qué pasó?
*CHI: the end.

Age: 6;10
*CHI: the monkey.
*CHI: went around and the farmer's just sitting.
*PAR: está descansando mira.
*CHI: oh the monkey's on the roof!
*PAR: mhm.
*CHI: how'd he got up there?
*PAR: mhm.
*CHI: and the farmer goes in the house.

Contributions, Limitations, and Future Directions

- Culture matters
- Children born in the U.S. to parents who lived in the U.S. for longer were more likely to increase in their English use with Spanish-speaking parents
- This mattered more than measures of current exposure to Spanish and English at home and school
- Language-use trajectories emerge early
- By PK entry at age 3-4, children with smaller Spanish vocabularies and who code-switched to English more frequently were more likely to be in the increasing English profile
- Limitations: small sample, only looked at booksharing context, minimal measures of school language environment
- Next steps: Sequential analysis of parent-child interactions in this data (ISB14 in Sydney), trajectory modeling with a larger dataset

Acknowledgements

The families who gave their time, effort, and knowledge to this study

Research assistants

Cecilia Jarquín Tapia \& Ali McAfee

Dissertation committee

Gigi Luk, Catherine Snow, Meredith Rowe, Stephanie Curenton

Postdoc mentors

Tricia Zucker \& Susan Landry
Funding from the IES, the NAEd/Spencer Dissertation Fellowship, El Instituto Cervantes, \& donation from Beach Lane Books

The research reported here was supported by the Institute of Education Sciences, U.S. Department of Education, through Grant R324B2000 18 to the University of Texas Health Science Center at Houston. The opinions expressed are those of the authors and do not represent views of the Institute or the U.S. Department of Education

Questions?

sarah.surrain@uth.tmc.edu
sarahsurrain.com

Descriptive statistics：Language use at each wave

Mean Total Word Types
ーローロー・Mean Spanish Word Types

	Wave 1		Wave 2		Wave 3	
	Mean	SD	Mean	SD	Mean	SD
	9.75	4.98	13.77	5.14	14.65	7.02
Total word types	8.82	5.23	11.39	5.78	11.9	7.95
Spanish word types	8.94	1.06	2.38	3.28	2.75	4.32

Stata script and output

. traj, multgroups(2) varl(types_spa1CHI_min types_spa2CHI_min types_spa3CHI_min) ///

 indepl(w1_childage_ctr w2_childage_ctr w3_childage_ctr) modeli(cnorm) /// min1(0) maxl(30) order1(2 2) ///model2(zip) var2(types_eng1CHI_min types_eng2CHI_min types_eng3CHI_min) /// indep2(w1_childage_ctr w2_childage_ctr w3_childage_ctr) order2(2 2) $====$ traj stata plugin ==== Jones BL Nagin DS, build: Oct 252021
32 observations read.
32 observations used in the trajectory model.

Maximum Likelihood Estimates Model: Censored Normal (cnorm)

| Group | Parameter | Estimate | Standard Error | T for H0: Parameter=0 | Prob > \|T| | 2 | Intercept
 Linear
 Quadratic |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | Intercept | 10.06733 | 1.00768 | 9.991 | 0.0000 | Group membership | |
| | Linear | 0.24536 | 0.12020 | 2.041 | 0.0427 | | |
| | Quadratic | -0.00010 | 0.00441 | -0.024 | 0.9813 | | |
| | | | | | | 1 | (\%) |
| 2 | Intercept | 6.92870 | 1.19362 | 5.805 | 0.0000 | 2 | (\%) |
| | Linear | 0.28604 | 0.14813 | 1.931 | 0.0551 | | |
| | Quadratic | -0.00923 | 0.00523 | -1.765 | 0.0794 | $B I C=-463.41 \quad(\mathrm{~N}=176)$ | |
| | Sigma | 5.13664 | 0.40404 | 12.713 | 0.0000 | Entrop | $y=0.870$ |

| Estimate | Standard Error | T for H0: Parameter=0 | Prob > \|T| |
| :---: | :---: | :---: | :---: |
| -0.82948 | 0.36582 | -2.267 | 0.0246 |
| 0.01970 | 0.03660 | 0.538 | 0.5911 |
| -0.00029 | 0.00124 | -0.236 | 0.8138 |
| 1.12374 | 0.15928 | 7.055 | 0.0000 |
| 0.00229 | 0.01541 | 0.149 | 0.8820 |
| 0.00082 | 0.00045 | 1.814 | 0.0713 |
| 60.04073 | 10.29238 | 5.834 | 0.0000 |
| 39.95927 | 10.29238 | 3.882 | 0.0001 |
| $B I C=-451.48$ | $(\mathrm{N}=32) \quad \mathrm{AIC}=$ | -441.22 ll= | -427. 22 |

Family and teacher language use by group

	Group 1. Highincreasing Spanish use	Group 2. increasing English use	Comparing groups (t / χ^{2}, p-value)
Family language use patterns, M (SD)			
Reported parent Spanish input (1-5)	4.42 (.77)	4.08 (.76)	$t(30)=1.25, p=.221$
Average reported input across all family members at wave 1	4.28 (.65)	3.94 (.58)	$t(30)=1.52, p=.138$
Parent Spanish types/min at wave 1	23.28 (4.37)	22.67 (6.40)	$t(30)=0.32, p=.748$
Parent MLU at wave 1	3.68 (.68)	3.25 (.61)	$t(30)=1.84, p=.076 \sim$
Teacher language use in daycare and PK (\%)			
Attended English-only childcare prior to Wave 1	36.84\%	30.77\%	$\chi^{2}(1)=.13, p=.722$
PK teacher used only Eng. in Wave 2	57.89\%	46.15\%	$\chi^{2}(1)=0.43, p=.513$

Parent and child characteristics by group

Child-initiated CS to Eng. at wave 1 . 02 (.03)

Group 1.
High-increasing
Spanish use
13.32 (4.32)
5.61 (6.83)
2.57 (1.45)
46.68 (7.99)
31.58\%
42.11\%
47.37\%
18.89 (9.04)
3.17 (3.67)

Group 2.
increasing English use ($\dagger / \chi^{2}, p$-value)
10.08 (4.84)
13.77 (4.82)
2.5 (.97)
45.77 (8.02)
53.85\%
0.00\%
15.38\%
4.08 (4.50)
6.60 (5.60)
.17 (.09)

$$
\begin{aligned}
& t(30)=1.98, p=.057 \sim \\
& t(30)=-3.71, p=.001 * * \\
& t(22)=0.14, p=.894
\end{aligned}
$$

Comparing groups

$$
t(30)=0.32, p=.753
$$

$$
\chi^{2}(1)=1.59, p=.208
$$

$$
\chi^{2}(1)=7.30, p=.007^{* *}
$$

$$
\chi^{2}(1)=3.50, p=.061 \sim
$$

$$
f(30)=-5.45, p<.001^{* * *}
$$

$$
t(26)=-1.96, p=0.060 \sim
$$

$$
t(30)=-6.58, p<.0001^{* * *}
$$

cale)
Child Characteristics, M (SD) or \%
Child age at wave 1
Child gender
Child born abroad
Oldest or only child
Spa. exp. vocab. raw at wave 1
Eng. exp. vocab. raw at wave 1

